{u^i}'
Vielleicht hat ja jemand eine rettende Idee.
{u^i}'
\[ \Pi^i(x)= \left\{ \left( \frac{\pi_1{u^i}'(x_1)}{\sum_t \pi_t{u^i}'(x_t)}, \dots, \frac{\pi_S{u^i}'(x_S)}{\sum_t \pi_t{u^i}'(x_t)} \right): \pi \in \Pi^i \right\} \]
\documentclass[10pt,a4paper]{scrartcl} \usepackage[latin1]{inputenc} \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \newcommand{\dx}[1]{\ensuremath{\left(#1\right)^\prime}} % oder mit Bruch: %\newcommand{\dx}[1]{\ensuremath{\;\tfrac{\mathrm{d}}{\mathrm{d}x}\!\!\left(#1\right)\;}} % analog \newcommand{\dt}[1]{\ensuremath{(\dot{#1})}} %\newcommand{\dx}[1]{\ensuremath{\;\tfrac{\mathrm{d}}{\mathrm{d}t}\!\!\left(#1\right)\;}} \begin{document} Tests: \begin{equation} u^i\quad {u^i}' \quad u^{i'} \quad u^{i\prime} \quad (u^i)^\prime \end{equation} Mit Befehl: \begin{equation} \dx{u^i} = \dx{\frac{a}{\pi^2\cdot b}}\quad\quad\dx{v^i} = b^2 \end{equation} Längliche Formel: \begin{equation} \Pi^i(x)= \left\{ \left( \frac{\pi_1\dx{u^i}(x_1)}{\sum_t \pi_t\dx{u^i}(x_t)}, \dots, \frac{\pi_S\dx{u^i}(x_S)}{\sum_t \pi_t\dx{u^i}(x_t)} \right): \pi \in \Pi^i \right\} \end{equation} \end{document}