ich möchte einen Verlauf einer Funktion inkl. Spannweite darstellen. Nach etwas suchen habe ich endlich eine Lösung gefunden.
Zum Abschluss habe ich noch das Problem, dass ich auf dem Label der x-Achse nur jeden n-ten Wert darstellen möchte. Wie mache ich das? Das Gitter soll sich automatisch anpassen. Momentan scheinen die Labels nicht zu der gezeichneten Funktion zu passen.
Gibt es eine Möglichkeit die Abstand zwischen zwei Werten auf der x-Achse zu definieren, so dass pdfplots automatisch die Anzahl an möglichen Labels berechnet und zwar so, dass diese sich nicht überschneiden.
Minimalbsp.:
\documentclass[border=5mm]{standalone} \usepackage{pgfplots} \pgfplotstableread{ X time label A B C D E F G min Spannweite 1 1983 {1983 - 2012} 0 0 0 0 0 0 0 0 0 2 1984 {1984 - 2013} -0.017121509 -0.033407736 -0.043991815 -0.041381073 -0.016848438 -0.01975182 -0.024115843 -0.086196319 0.140966659 3 1985 {1985 - 2014} 0.019168814 -0.012487143 -0.022193156 -0.015052538 0.024497873 0.0092011 -0.001395904 -0.073354262 0.191223186 4 1986 {1986 - 2015} 0.010553887 -0.042213326 -0.049313848 -0.027375214 0.021355285 0.010324509 0.004243064 -0.122494299 0.255413153 5 1987 {1987 - 2016} -0.023699411 -0.086672055 -0.086567445 -0.049278918 -0.004004168 -0.006249814 -0.000485287 -0.155460783 0.278589525 6 1988 {1988 - 2017} -0.011886025 -0.08330078 -0.080887601 -0.045744396 0.013681493 0.009097842 0.011756454 -0.153528005 0.290258406 7 1989 {1989 - 2018} -0.024541182 -0.092471578 -0.096826026 -0.069472379 0.013713619 -0.016252304 -0.016818474 -0.155341913 0.292655885 8 1990 {1990 - 2019} -0.00487213 -0.048878959 -0.067800322 -0.057844643 0.047403555 -0.009876466 -0.004226095 -0.139123335 0.32474989 9 1991 {1991 - 2020} 0.035935224 0.004910143 -0.021977269 -0.010510656 0.085810092 0.030781789 0.027625115 -0.082000587 0.291281542 10 1992 {1992 - 2021} 0.052810952 0.037344474 0.020971934 0.014958498 0.094824217 0.050443658 0.052110916 -0.068387719 0.328695796 11 1993 {1993 - 2022} 0.048162089 0.035307546 0.012143249 -0.002588001 0.094532826 0.028854705 0.028604777 -0.106878338 0.363469069 12 1994 {1994 - 2023} 0.078112382 0.053990896 0.03202067 0.016204563 0.115955317 0.040331221 0.047539245 -0.091859473 0.342772934 13 1995 {1995 - 2024} 0.142922917 0.141157734 0.119961698 0.079482743 0.180735535 0.09577619 0.105475763 0.006035939 0.301282051 14 1996 {1996 - 2025} 0.171052784 0.179799901 0.147651521 0.086928911 0.213724998 0.111784405 0.106847191 -0.030107748 0.358633431 15 1997 {1997 - 2026} 0.165456042 0.181184872 0.153591158 0.095922745 0.217267418 0.11636918 0.115100914 -0.033022123 0.372371643 16 1998 {1998 - 2027} 0.224240187 0.222951116 0.190423168 0.143155332 0.269765063 0.185907948 0.170090426 0.016558039 0.380009303 17 1999 {1999 - 2028} 0.223616776 0.226696304 0.205100607 0.155756066 0.261785525 0.176642682 0.16036626 0.029030541 0.327152522 18 2000 {2000 - 2029} 0.210237372 0.227171501 0.19845006 0.142596592 0.268970306 0.154867414 0.137484693 0.012038343 0.329654591 19 2001 {2001 - 2030} 0.2300689 0.237031319 0.212801484 0.164336768 0.293214931 0.187869427 0.170925841 0.083072499 0.26578724 20 2002 {2002 - 2031} 0.281759088 0.28158237 0.263572235 0.215203865 0.338041061 0.240563645 0.226988863 0.121990692 0.259313934 21 2003 {2003 - 2032} 0.291069512 0.286507696 0.272198638 0.223680197 0.35387195 0.253847404 0.234544591 0.188787783 0.208484208 22 2004 {2004 - 2033} 0.279696016 0.256946107 0.253783435 0.220418141 0.334292877 0.239954812 0.223443376 0.145399019 0.243891953 23 2005 {2005 - 2034} 0.299570795 0.270056399 0.273249056 0.241981287 0.356514012 0.268356568 0.254467148 0.205903041 0.208363089 24 2006 {2006 - 2035} 0.309615651 0.288330802 0.295104247 0.251328015 0.374036303 0.26990925 0.257330405 0.189790925 0.218600357 25 2007 {2007 - 2036} 0.334396198 0.325301036 0.33266742 0.276373125 0.406220708 0.290316854 0.285009109 0.164827036 0.292418732 26 2008 {2008 - 2037} 0.371887935 0.370445833 0.377481111 0.316790364 0.436335293 0.324749389 0.316231169 0.195754904 0.281052286 27 2009 {2009 - 2038} 0.390667456 0.389525845 0.394594888 0.335774503 0.460629342 0.346089636 0.34321401 0.184665097 0.37308909 28 2010 {2010 - 2039} 0.433736661 0.427886718 0.435651017 0.373323563 0.498610897 0.384062949 0.386534691 0.1829685 0.473446551 29 2011 {2011 - 2040} 0.473674668 0.475968631 0.485528631 0.421916836 0.534010866 0.428048737 0.433321488 0.260294957 0.427565888 30 2012 {2012 - 2041} 0.46168758 0.468334961 0.482403125 0.423924017 0.517868011 0.425154602 0.43507744 0.230756039 0.48193625 31 2013 {2013 - 2042} 0.489269937 0.486926286 0.492285659 0.435349385 0.549691709 0.447369925 0.458191789 0.253839723 0.461647824 32 2014 {2014 - 2043} 0.531425078 0.532379389 0.536581791 0.47675367 0.600494315 0.484484524 0.493143287 0.213728132 0.602720808 33 2015 {2015 - 2044} 0.555327202 0.556650037 0.562337987 0.491977778 0.618779023 0.494678952 0.508404903 0.228674333 0.619103155 34 2016 {2016 - 2045} 0.578895348 0.59554575 0.592775176 0.518415477 0.649811829 0.512698601 0.524595134 0.236213715 0.616146512 35 2017 {2017 - 2046} 0.626806423 0.649842415 0.648197846 0.563925478 0.697474029 0.556888209 0.571052026 0.239529226 0.638046746 36 2018 {2018 - 2047} 0.665394097 0.694836343 0.691952978 0.606052624 0.743677475 0.597279404 0.616604513 0.192976858 0.751212912 37 2019 {2019 - 2048} 0.732525485 0.770616312 0.770732625 0.686651481 0.804595643 0.671722551 0.696548627 0.239398067 0.795997432 38 2020 {2020 - 2049} 0.741315034 0.78518986 0.783443389 0.698495025 0.808797061 0.683760755 0.711032203 0.24673281 0.779420334 39 2021 {2021 - 2050} 0.768481223 0.808276911 0.803749661 0.714082001 0.842087552 0.711349275 0.737789247 0.313184241 0.739605615 40 2022 {2022 - 2051} 0.774142054 0.806783362 0.794206577 0.714286281 0.848367335 0.71745826 0.749810838 0.227900328 0.877740603 41 2023 {2023 - 2052} 0.807467935 0.840161685 0.838013515 0.763509688 0.877910911 0.76380641 0.809288296 0.244797274 0.893231395 42 2024 {2024 - 2053} 0.873055245 0.910648463 0.900370973 0.82860762 0.948464718 0.837101181 0.87786714 0.327795198 0.872733752 43 2025 {2025 - 2054} 0.871693248 0.894911189 0.886821435 0.82948376 0.947331394 0.851130646 0.892213995 0.330872303 0.873132443 44 2026 {2026 - 2055} 0.890040304 0.916658705 0.907396126 0.852034206 0.968032715 0.869171063 0.911976626 0.370480916 0.859132109 45 2027 {2027 - 2056} 0.935158752 0.954043871 0.944781851 0.89614354 1.003763737 0.9191149 0.961000089 0.356866813 0.966984114 46 2028 {2028 - 2057} 0.964747939 0.992655695 0.994650352 0.948560021 1.026834143 0.952701095 1.014543608 0.353999987 1.062290385 47 2029 {2029 - 2058} 1.02780542 1.059577163 1.063601408 1.026900246 1.08967071 1.030712214 1.091669717 0.441944943 1.059194973 48 2030 {2030 - 2059} 1.077961853 1.113736581 1.119002072 1.082620752 1.135675016 1.081485366 1.143310615 0.520863122 0.974474534 49 2031 {2031 - 2060} 1.12399162 1.166127748 1.172771516 1.145775129 1.163675441 1.137910958 1.204792387 0.564064478 1.028258082 50 2032 {2032 - 2061} 1.156512553 1.212171712 1.215992495 1.183353654 1.19583324 1.182771146 1.249132814 0.568324834 1.043387999 51 2033 {2033 - 2062} 1.200269251 1.256172921 1.26474565 1.245100358 1.224293615 1.2378828 1.31317218 0.618161641 1.020545536 52 2034 {2034 - 2063} 1.276734381 1.345176945 1.354081728 1.336550766 1.29819637 1.336898704 1.426576743 0.692909391 1.090406215 53 2035 {2035 - 2064} 1.333744682 1.420582025 1.419341432 1.407193836 1.349149607 1.404676539 1.49495229 0.782396529 1.052227944 54 2036 {2036 - 2065} 1.358749546 1.451171887 1.44347115 1.434323898 1.380576478 1.433777801 1.51373013 0.837618724 0.995098306 55 2037 {2037 - 2066} 1.407008683 1.487133376 1.479235439 1.48157398 1.420729643 1.485819648 1.561326094 0.907409259 0.973023549 56 2038 {2038 - 2067} 1.464538073 1.540992362 1.536274624 1.551137957 1.469879596 1.55868312 1.643361684 0.914708849 1.107646534 57 2039 {2039 - 2068} 1.510456056 1.593473054 1.594111663 1.608358031 1.509483173 1.608986608 1.694286018 0.986079711 1.059236627 58 2040 {2040 - 2069} 1.535196309 1.628966279 1.630786895 1.647573208 1.528286957 1.647294063 1.730291243 1.016213673 1.069198311 59 2041 {2041 - 2070} 1.542021804 1.626232445 1.630791116 1.653617338 1.533654976 1.66308718 1.742306144 1.012641627 1.101786811 60 2042 {2042 - 2071} 1.574776594 1.66162872 1.664260913 1.689444617 1.564633882 1.692833981 1.778988745 1.071657369 1.079777211 61 2043 {2043 - 2072} 1.589206354 1.685235201 1.694288559 1.725515769 1.562262704 1.719714336 1.817459671 1.073886346 1.125601282 62 2044 {2044 - 2073} 1.610139551 1.709472451 1.723466639 1.75801086 1.571785286 1.751812193 1.861289172 1.066158613 1.18175934 63 2045 {2045 - 2074} 1.651266591 1.761986427 1.78424809 1.816319535 1.612314997 1.804049283 1.918019456 1.051068548 1.290479137 64 2046 {2046 - 2075} 1.684136986 1.795718468 1.818575311 1.852805218 1.645913643 1.849061663 1.961606069 1.093926152 1.318816495 65 2047 {2047 - 2076} 1.711950808 1.819729309 1.839285541 1.881449528 1.66566606 1.878737245 1.988798129 1.137228829 1.341085766 66 2048 {2048 - 2077} 1.741081487 1.833155525 1.855506051 1.912630145 1.684414064 1.91841873 2.026677243 1.187224052 1.308854162 67 2049 {2049 - 2078} 1.759173884 1.846179708 1.870001372 1.935729642 1.702528461 1.938429043 2.053880151 1.236627527 1.308212202 68 2050 {2050 - 2079} 1.821957245 1.914450093 1.947766231 2.013564609 1.756787031 2.006210123 2.125393131 1.281682677 1.319406191 69 2051 {2051 - 2080} 1.832650628 1.924405464 1.963778459 2.034888677 1.75935254 2.018893364 2.144566063 1.253213059 1.417515112 70 2052 {2052 - 2081} 1.90147542 2.002501579 2.051485079 2.126406657 1.81777238 2.101150118 2.225565935 1.361188477 1.357525234 71 2053 {2053 - 2082} 1.936002274 2.043579035 2.089530512 2.161532165 1.842456734 2.140095678 2.259735341 1.362976623 1.422588109 72 2054 {2054 - 2083} 1.962039794 2.082388799 2.133978897 2.199473727 1.860964215 2.175732679 2.299298433 1.371589355 1.453152498 73 2055 {2055 - 2084} 2.037083597 2.166391525 2.220342437 2.286236855 1.919561624 2.252230442 2.382111422 1.445553043 1.534228553 74 2056 {2056 - 2085} 2.088158354 2.222277452 2.278936313 2.353751262 1.956487028 2.322201916 2.456862053 1.427092605 1.663122533 75 2057 {2057 - 2086} 2.128926834 2.264910644 2.325053151 2.410679486 1.985027714 2.384705614 2.533506258 1.420700918 1.78036235 76 2058 {2058 - 2087} 2.174894284 2.316286644 2.373102678 2.446371463 2.035668489 2.427278001 2.570489092 1.46141329 1.815386031 77 2059 {2059 - 2088} 2.224813794 2.368289771 2.422337384 2.498519042 2.078794771 2.478880385 2.629777314 1.482569498 1.848565951 78 2060 {2060 - 2089} 2.256399902 2.390228001 2.44583375 2.520596508 2.111910282 2.512277797 2.666205462 1.485835363 1.871982034 79 2061 {2061 - 2090} 2.311885686 2.44658055 2.50669335 2.572766083 2.171189322 2.554316472 2.71472186 1.55837305 1.875107792 80 2062 {2062 - 2091} 2.307906405 2.435937425 2.494213393 2.576779108 2.165999506 2.554712035 2.720327514 1.585094642 1.774181484 81 2063 {2063 - 2092} 2.358258356 2.475567742 2.53831209 2.624653649 2.21209766 2.611025184 2.782215061 1.632674514 1.786795595 82 2064 {2064 - 2093} 2.416522771 2.526194355 2.58626756 2.678588815 2.257695505 2.675913633 2.839162135 1.681057351 1.79271713 83 2065 {2065 - 2094} 2.442922663 2.546023786 2.613134878 2.703008614 2.285022945 2.692875561 2.857521291 1.70412459 1.768297303 84 2066 {2066 - 2095} 2.52341658 2.608100966 2.686074006 2.793995684 2.345479598 2.792135185 2.970881776 1.715426062 1.859875981 85 2067 {2067 - 2096} 2.544469934 2.625972414 2.712383344 2.824030395 2.354048424 2.821966616 3.006671715 1.722197173 1.906033824 86 2068 {2068 - 2097} 2.524215679 2.603371019 2.696820731 2.811816011 2.33496815 2.80536687 2.995734657 1.704771975 1.910714585 87 2069 {2069 - 2098} 2.553907755 2.622920639 2.727764864 2.862892013 2.361846429 2.848345051 3.055447638 1.747192521 1.933177842 88 2070 {2070 - 2099} 2.55515788 2.615621443 2.719432298 2.863752366 2.368219378 2.852742555 3.064741987 1.744131494 1.919366444 }\Data \begin{document} \begin{tikzpicture} %\pgfplotstableread[col sep=semicolon]{data/datafilledcurves.csv}\Data \begin{axis}[ xticklabels from table={\Data}{label}, xtick={0,5,...,88}, xticklabel style={rotate=90,xshift=-0.4ex,anchor=mid east}, % extra y ticks=0, % extra y tick style={grid=major, grid style={green!20,opacity=0.75}}, % y tick label style={/pgf/number format/1000 sep=}, reverse legend, legend pos=north west, legend entries={Spannweite, X}, tiny, height=4cm, width=10cm, ylabel={Änderung}, xlabel={Test}, ymin=-0.5, ymax=4, xmin=0, xmax=88, grid=major, axis x line* = bottom, axis y line* = left ] \addplot [stack plots=y, fill=none, draw=none, forget plot] table [x=X,y=min]{\Data} \closedcycle; \addplot [stack plots=y, fill=gray!20, opacity=0.8, draw opacity=0, area legend] table [x=X,y=Spannweite] {\Data} \closedcycle; \addplot [stack plots=false, draw=black, thick] table [x=X,y=A] {\Data}; \end{axis} \end{tikzpicture} \end{document}