\begin{equation} dist(c_1,c_2) = \frac{w(c_1 \rightarrow_r c_2) + w(c_2 \rightarrow_{r'} c_1)}{2 * max \left[\min\limits_{p\in paths(c_1,root)}len_e(p); \min\limits_{p\in paths(c_2,root)}len_e(p)\right]}
\label{eq:sussnadist}
\end{equation} Danke
\begin{equation} dist(c_1,c_2) = \frac{w(c_1 \rightarrow_r c_2) + w(c_2 \rightarrow_{r'} c_1)}{2 * max \left[\min\limits_{p\in paths(c_1,root)}len_e(p); \min\limits_{p\in paths(c_2,root)}len_e(p)\right]}
\label{eq:sussnadist}
\end{equation} \begin{equation} \mathit{dist}(c_1,c_2) = \frac{w(c_1 \rightarrow_r c_2) + w(c_2 \rightarrow_{r'} c_1)}{2 * \mathit{max} \left[\mathit{\min\limits_{p\in paths(c_1,root)} \!\!\!\!\!\!\!\!\!\!\!\! len_e(p)}; \mathit{\min\limits_{p\in paths(c_2,root)}\!\!\!\!\!\!\!\!\!\!\!\! len_e(p)}\right]}
\label{eq:sussnadist}
\end{equation}