\begin{align*}
\sin \alpha_{tot}=\frac{n_2}{n_1}\\
\text{Fresnelschen Gleichungen f"ur } e_^{\parallel}_r,E^{\bot}_r\\
\text{Z"ahler, Nenner: }\pm \sqrt{\cdots}\\
\\
\sqrt{<0}=i\sqrt{>0}\\
\frac{E^{\bot,\parallel}_r}{E^{\bot,\parallel}_e}=\frac{A^{\bot,\parallel},-B^{\bot,\parallel}}{A^{\bot,\parallel},B^{\bot,\parallel}}, A^{\bot}+iB^{\bot}=r^{\bot}e^{i\varphi^{\bot}}\\
\frac{E^{\bot,\parallel}_r}{E^{\bot,\parallel}_e}=\frac{r^{\bot,\parallel}e^{-i\varphi{\bot,\parallel}}}{r^{\bot,\parallel}+iB^{\bot,\parallel}}=e^{iR\varphi^{\bot,\parallel}}\\
\alpha_e > \alpha_{tot}\\
\end{align*}! Missing { inserted.
<to be read again> 
                   ^
l.411 \end{align*}
                  
? 
! Emergency stop.
<to be read again> 
                   ^
l.411 \end{align*}hoffe ihr könnt mir helfen.
mfg
ragnarok



