\begin{align*} \sin \alpha_{tot}=\frac{n_2}{n_1}\\ \text{Fresnelschen Gleichungen f"ur } e_^{\parallel}_r,E^{\bot}_r\\ \text{Z"ahler, Nenner: }\pm \sqrt{\cdots}\\ \\ \sqrt{<0}=i\sqrt{>0}\\ \frac{E^{\bot,\parallel}_r}{E^{\bot,\parallel}_e}=\frac{A^{\bot,\parallel},-B^{\bot,\parallel}}{A^{\bot,\parallel},B^{\bot,\parallel}}, A^{\bot}+iB^{\bot}=r^{\bot}e^{i\varphi^{\bot}}\\ \frac{E^{\bot,\parallel}_r}{E^{\bot,\parallel}_e}=\frac{r^{\bot,\parallel}e^{-i\varphi{\bot,\parallel}}}{r^{\bot,\parallel}+iB^{\bot,\parallel}}=e^{iR\varphi^{\bot,\parallel}}\\ \alpha_e > \alpha_{tot}\\ \end{align*}
! Missing { inserted. <to be read again> ^ l.411 \end{align*} ? ! Emergency stop. <to be read again> ^ l.411 \end{align*}
hoffe ihr könnt mir helfen.
mfg
ragnarok