Hier mein Problem:
\documentclass{beamer}
\usepackage[ngerman]{babel}
\usepackage[latin1]{inputenc}
\usepackage{algorithmic}
\begin{document}
\begin{frame}{}
\underline{\small{Calls in $P$:}} \qquad \qquad $1: f \to g$ and $2: g \to g$
\underline{\small{Build the set $S$ by a transitive closure procedure:}}
\begin{algorithmic}
\scriptsize
\FORALL{calls $c : f \to g$ of program $P$}
\IF{$f$ is reachable from $f_{\text{initial}}$}
\STATE include $G_c:f \to g$ in $S$
\ENDIF
\ENDFOR
\visible<2->{\REPEAT
\STATE For any $G: f \to g$ and $H: g \to h$ in $S$ include also $G;H$ in $S$
\UNTIL{no new graph was added to $S$}}
\end{algorithmic}
\visible<3->{
\underline{\small{Check $S$:}}
\begin{algorithmic}
\scriptsize
\FORALL{$G:f \to f$ in $S$}
\IF{$G = G;G$ and $x \stackrel{\downarrow}{\to} x \not\in G$ for each $x \in Param(f)$}
\STATE $P$ is not size-change terminating
\ENDIF
\ENDFOR
\end{algorithmic}}
\end{frame}
\end{document} Danke,
Seb