von mar.kus » Di 29. Okt 2013, 13:48
Hallo,
ich möchte einen Verlauf einer Funktion inkl. Spannweite darstellen. Nach etwas suchen habe ich endlich eine Lösung gefunden.
Zum Abschluss habe ich noch das Problem, dass ich auf dem Label der x-Achse nur jeden n-ten Wert darstellen möchte. Wie mache ich das? Das Gitter soll sich automatisch anpassen. Momentan scheinen die Labels nicht zu der gezeichneten Funktion zu passen.
Gibt es eine Möglichkeit die Abstand zwischen zwei Werten auf der x-Achse zu definieren, so dass pdfplots automatisch die Anzahl an möglichen Labels berechnet und zwar so, dass diese sich nicht überschneiden.
Minimalbsp.:
\documentclass[border=5mm]{standalone}
\usepackage{pgfplots}
\pgfplotstableread{
X time label A B C D E F G min Spannweite
1 1983 {1983 - 2012} 0 0 0 0 0 0 0 0 0
2 1984 {1984 - 2013} -0.017121509 -0.033407736 -0.043991815 -0.041381073 -0.016848438 -0.01975182 -0.024115843 -0.086196319 0.140966659
3 1985 {1985 - 2014} 0.019168814 -0.012487143 -0.022193156 -0.015052538 0.024497873 0.0092011 -0.001395904 -0.073354262 0.191223186
4 1986 {1986 - 2015} 0.010553887 -0.042213326 -0.049313848 -0.027375214 0.021355285 0.010324509 0.004243064 -0.122494299 0.255413153
5 1987 {1987 - 2016} -0.023699411 -0.086672055 -0.086567445 -0.049278918 -0.004004168 -0.006249814 -0.000485287 -0.155460783 0.278589525
6 1988 {1988 - 2017} -0.011886025 -0.08330078 -0.080887601 -0.045744396 0.013681493 0.009097842 0.011756454 -0.153528005 0.290258406
7 1989 {1989 - 2018} -0.024541182 -0.092471578 -0.096826026 -0.069472379 0.013713619 -0.016252304 -0.016818474 -0.155341913 0.292655885
8 1990 {1990 - 2019} -0.00487213 -0.048878959 -0.067800322 -0.057844643 0.047403555 -0.009876466 -0.004226095 -0.139123335 0.32474989
9 1991 {1991 - 2020} 0.035935224 0.004910143 -0.021977269 -0.010510656 0.085810092 0.030781789 0.027625115 -0.082000587 0.291281542
10 1992 {1992 - 2021} 0.052810952 0.037344474 0.020971934 0.014958498 0.094824217 0.050443658 0.052110916 -0.068387719 0.328695796
11 1993 {1993 - 2022} 0.048162089 0.035307546 0.012143249 -0.002588001 0.094532826 0.028854705 0.028604777 -0.106878338 0.363469069
12 1994 {1994 - 2023} 0.078112382 0.053990896 0.03202067 0.016204563 0.115955317 0.040331221 0.047539245 -0.091859473 0.342772934
13 1995 {1995 - 2024} 0.142922917 0.141157734 0.119961698 0.079482743 0.180735535 0.09577619 0.105475763 0.006035939 0.301282051
14 1996 {1996 - 2025} 0.171052784 0.179799901 0.147651521 0.086928911 0.213724998 0.111784405 0.106847191 -0.030107748 0.358633431
15 1997 {1997 - 2026} 0.165456042 0.181184872 0.153591158 0.095922745 0.217267418 0.11636918 0.115100914 -0.033022123 0.372371643
16 1998 {1998 - 2027} 0.224240187 0.222951116 0.190423168 0.143155332 0.269765063 0.185907948 0.170090426 0.016558039 0.380009303
17 1999 {1999 - 2028} 0.223616776 0.226696304 0.205100607 0.155756066 0.261785525 0.176642682 0.16036626 0.029030541 0.327152522
18 2000 {2000 - 2029} 0.210237372 0.227171501 0.19845006 0.142596592 0.268970306 0.154867414 0.137484693 0.012038343 0.329654591
19 2001 {2001 - 2030} 0.2300689 0.237031319 0.212801484 0.164336768 0.293214931 0.187869427 0.170925841 0.083072499 0.26578724
20 2002 {2002 - 2031} 0.281759088 0.28158237 0.263572235 0.215203865 0.338041061 0.240563645 0.226988863 0.121990692 0.259313934
21 2003 {2003 - 2032} 0.291069512 0.286507696 0.272198638 0.223680197 0.35387195 0.253847404 0.234544591 0.188787783 0.208484208
22 2004 {2004 - 2033} 0.279696016 0.256946107 0.253783435 0.220418141 0.334292877 0.239954812 0.223443376 0.145399019 0.243891953
23 2005 {2005 - 2034} 0.299570795 0.270056399 0.273249056 0.241981287 0.356514012 0.268356568 0.254467148 0.205903041 0.208363089
24 2006 {2006 - 2035} 0.309615651 0.288330802 0.295104247 0.251328015 0.374036303 0.26990925 0.257330405 0.189790925 0.218600357
25 2007 {2007 - 2036} 0.334396198 0.325301036 0.33266742 0.276373125 0.406220708 0.290316854 0.285009109 0.164827036 0.292418732
26 2008 {2008 - 2037} 0.371887935 0.370445833 0.377481111 0.316790364 0.436335293 0.324749389 0.316231169 0.195754904 0.281052286
27 2009 {2009 - 2038} 0.390667456 0.389525845 0.394594888 0.335774503 0.460629342 0.346089636 0.34321401 0.184665097 0.37308909
28 2010 {2010 - 2039} 0.433736661 0.427886718 0.435651017 0.373323563 0.498610897 0.384062949 0.386534691 0.1829685 0.473446551
29 2011 {2011 - 2040} 0.473674668 0.475968631 0.485528631 0.421916836 0.534010866 0.428048737 0.433321488 0.260294957 0.427565888
30 2012 {2012 - 2041} 0.46168758 0.468334961 0.482403125 0.423924017 0.517868011 0.425154602 0.43507744 0.230756039 0.48193625
31 2013 {2013 - 2042} 0.489269937 0.486926286 0.492285659 0.435349385 0.549691709 0.447369925 0.458191789 0.253839723 0.461647824
32 2014 {2014 - 2043} 0.531425078 0.532379389 0.536581791 0.47675367 0.600494315 0.484484524 0.493143287 0.213728132 0.602720808
33 2015 {2015 - 2044} 0.555327202 0.556650037 0.562337987 0.491977778 0.618779023 0.494678952 0.508404903 0.228674333 0.619103155
34 2016 {2016 - 2045} 0.578895348 0.59554575 0.592775176 0.518415477 0.649811829 0.512698601 0.524595134 0.236213715 0.616146512
35 2017 {2017 - 2046} 0.626806423 0.649842415 0.648197846 0.563925478 0.697474029 0.556888209 0.571052026 0.239529226 0.638046746
36 2018 {2018 - 2047} 0.665394097 0.694836343 0.691952978 0.606052624 0.743677475 0.597279404 0.616604513 0.192976858 0.751212912
37 2019 {2019 - 2048} 0.732525485 0.770616312 0.770732625 0.686651481 0.804595643 0.671722551 0.696548627 0.239398067 0.795997432
38 2020 {2020 - 2049} 0.741315034 0.78518986 0.783443389 0.698495025 0.808797061 0.683760755 0.711032203 0.24673281 0.779420334
39 2021 {2021 - 2050} 0.768481223 0.808276911 0.803749661 0.714082001 0.842087552 0.711349275 0.737789247 0.313184241 0.739605615
40 2022 {2022 - 2051} 0.774142054 0.806783362 0.794206577 0.714286281 0.848367335 0.71745826 0.749810838 0.227900328 0.877740603
41 2023 {2023 - 2052} 0.807467935 0.840161685 0.838013515 0.763509688 0.877910911 0.76380641 0.809288296 0.244797274 0.893231395
42 2024 {2024 - 2053} 0.873055245 0.910648463 0.900370973 0.82860762 0.948464718 0.837101181 0.87786714 0.327795198 0.872733752
43 2025 {2025 - 2054} 0.871693248 0.894911189 0.886821435 0.82948376 0.947331394 0.851130646 0.892213995 0.330872303 0.873132443
44 2026 {2026 - 2055} 0.890040304 0.916658705 0.907396126 0.852034206 0.968032715 0.869171063 0.911976626 0.370480916 0.859132109
45 2027 {2027 - 2056} 0.935158752 0.954043871 0.944781851 0.89614354 1.003763737 0.9191149 0.961000089 0.356866813 0.966984114
46 2028 {2028 - 2057} 0.964747939 0.992655695 0.994650352 0.948560021 1.026834143 0.952701095 1.014543608 0.353999987 1.062290385
47 2029 {2029 - 2058} 1.02780542 1.059577163 1.063601408 1.026900246 1.08967071 1.030712214 1.091669717 0.441944943 1.059194973
48 2030 {2030 - 2059} 1.077961853 1.113736581 1.119002072 1.082620752 1.135675016 1.081485366 1.143310615 0.520863122 0.974474534
49 2031 {2031 - 2060} 1.12399162 1.166127748 1.172771516 1.145775129 1.163675441 1.137910958 1.204792387 0.564064478 1.028258082
50 2032 {2032 - 2061} 1.156512553 1.212171712 1.215992495 1.183353654 1.19583324 1.182771146 1.249132814 0.568324834 1.043387999
51 2033 {2033 - 2062} 1.200269251 1.256172921 1.26474565 1.245100358 1.224293615 1.2378828 1.31317218 0.618161641 1.020545536
52 2034 {2034 - 2063} 1.276734381 1.345176945 1.354081728 1.336550766 1.29819637 1.336898704 1.426576743 0.692909391 1.090406215
53 2035 {2035 - 2064} 1.333744682 1.420582025 1.419341432 1.407193836 1.349149607 1.404676539 1.49495229 0.782396529 1.052227944
54 2036 {2036 - 2065} 1.358749546 1.451171887 1.44347115 1.434323898 1.380576478 1.433777801 1.51373013 0.837618724 0.995098306
55 2037 {2037 - 2066} 1.407008683 1.487133376 1.479235439 1.48157398 1.420729643 1.485819648 1.561326094 0.907409259 0.973023549
56 2038 {2038 - 2067} 1.464538073 1.540992362 1.536274624 1.551137957 1.469879596 1.55868312 1.643361684 0.914708849 1.107646534
57 2039 {2039 - 2068} 1.510456056 1.593473054 1.594111663 1.608358031 1.509483173 1.608986608 1.694286018 0.986079711 1.059236627
58 2040 {2040 - 2069} 1.535196309 1.628966279 1.630786895 1.647573208 1.528286957 1.647294063 1.730291243 1.016213673 1.069198311
59 2041 {2041 - 2070} 1.542021804 1.626232445 1.630791116 1.653617338 1.533654976 1.66308718 1.742306144 1.012641627 1.101786811
60 2042 {2042 - 2071} 1.574776594 1.66162872 1.664260913 1.689444617 1.564633882 1.692833981 1.778988745 1.071657369 1.079777211
61 2043 {2043 - 2072} 1.589206354 1.685235201 1.694288559 1.725515769 1.562262704 1.719714336 1.817459671 1.073886346 1.125601282
62 2044 {2044 - 2073} 1.610139551 1.709472451 1.723466639 1.75801086 1.571785286 1.751812193 1.861289172 1.066158613 1.18175934
63 2045 {2045 - 2074} 1.651266591 1.761986427 1.78424809 1.816319535 1.612314997 1.804049283 1.918019456 1.051068548 1.290479137
64 2046 {2046 - 2075} 1.684136986 1.795718468 1.818575311 1.852805218 1.645913643 1.849061663 1.961606069 1.093926152 1.318816495
65 2047 {2047 - 2076} 1.711950808 1.819729309 1.839285541 1.881449528 1.66566606 1.878737245 1.988798129 1.137228829 1.341085766
66 2048 {2048 - 2077} 1.741081487 1.833155525 1.855506051 1.912630145 1.684414064 1.91841873 2.026677243 1.187224052 1.308854162
67 2049 {2049 - 2078} 1.759173884 1.846179708 1.870001372 1.935729642 1.702528461 1.938429043 2.053880151 1.236627527 1.308212202
68 2050 {2050 - 2079} 1.821957245 1.914450093 1.947766231 2.013564609 1.756787031 2.006210123 2.125393131 1.281682677 1.319406191
69 2051 {2051 - 2080} 1.832650628 1.924405464 1.963778459 2.034888677 1.75935254 2.018893364 2.144566063 1.253213059 1.417515112
70 2052 {2052 - 2081} 1.90147542 2.002501579 2.051485079 2.126406657 1.81777238 2.101150118 2.225565935 1.361188477 1.357525234
71 2053 {2053 - 2082} 1.936002274 2.043579035 2.089530512 2.161532165 1.842456734 2.140095678 2.259735341 1.362976623 1.422588109
72 2054 {2054 - 2083} 1.962039794 2.082388799 2.133978897 2.199473727 1.860964215 2.175732679 2.299298433 1.371589355 1.453152498
73 2055 {2055 - 2084} 2.037083597 2.166391525 2.220342437 2.286236855 1.919561624 2.252230442 2.382111422 1.445553043 1.534228553
74 2056 {2056 - 2085} 2.088158354 2.222277452 2.278936313 2.353751262 1.956487028 2.322201916 2.456862053 1.427092605 1.663122533
75 2057 {2057 - 2086} 2.128926834 2.264910644 2.325053151 2.410679486 1.985027714 2.384705614 2.533506258 1.420700918 1.78036235
76 2058 {2058 - 2087} 2.174894284 2.316286644 2.373102678 2.446371463 2.035668489 2.427278001 2.570489092 1.46141329 1.815386031
77 2059 {2059 - 2088} 2.224813794 2.368289771 2.422337384 2.498519042 2.078794771 2.478880385 2.629777314 1.482569498 1.848565951
78 2060 {2060 - 2089} 2.256399902 2.390228001 2.44583375 2.520596508 2.111910282 2.512277797 2.666205462 1.485835363 1.871982034
79 2061 {2061 - 2090} 2.311885686 2.44658055 2.50669335 2.572766083 2.171189322 2.554316472 2.71472186 1.55837305 1.875107792
80 2062 {2062 - 2091} 2.307906405 2.435937425 2.494213393 2.576779108 2.165999506 2.554712035 2.720327514 1.585094642 1.774181484
81 2063 {2063 - 2092} 2.358258356 2.475567742 2.53831209 2.624653649 2.21209766 2.611025184 2.782215061 1.632674514 1.786795595
82 2064 {2064 - 2093} 2.416522771 2.526194355 2.58626756 2.678588815 2.257695505 2.675913633 2.839162135 1.681057351 1.79271713
83 2065 {2065 - 2094} 2.442922663 2.546023786 2.613134878 2.703008614 2.285022945 2.692875561 2.857521291 1.70412459 1.768297303
84 2066 {2066 - 2095} 2.52341658 2.608100966 2.686074006 2.793995684 2.345479598 2.792135185 2.970881776 1.715426062 1.859875981
85 2067 {2067 - 2096} 2.544469934 2.625972414 2.712383344 2.824030395 2.354048424 2.821966616 3.006671715 1.722197173 1.906033824
86 2068 {2068 - 2097} 2.524215679 2.603371019 2.696820731 2.811816011 2.33496815 2.80536687 2.995734657 1.704771975 1.910714585
87 2069 {2069 - 2098} 2.553907755 2.622920639 2.727764864 2.862892013 2.361846429 2.848345051 3.055447638 1.747192521 1.933177842
88 2070 {2070 - 2099} 2.55515788 2.615621443 2.719432298 2.863752366 2.368219378 2.852742555 3.064741987 1.744131494 1.919366444
}\Data
\begin{document}
\begin{tikzpicture}
%\pgfplotstableread[col sep=semicolon]{data/datafilledcurves.csv}\Data
\begin{axis}[
xticklabels from table={\Data}{label},
xtick={0,5,...,88},
xticklabel style={rotate=90,xshift=-0.4ex,anchor=mid east},
% extra y ticks=0,
% extra y tick style={grid=major, grid style={green!20,opacity=0.75}},
% y tick label style={/pgf/number format/1000 sep=},
reverse legend,
legend pos=north west,
legend entries={Spannweite, X},
tiny,
height=4cm,
width=10cm,
ylabel={Änderung},
xlabel={Test},
ymin=-0.5, ymax=4,
xmin=0, xmax=88,
grid=major,
axis x line* = bottom,
axis y line* = left
]
\addplot [stack plots=y, fill=none, draw=none, forget plot] table [x=X,y=min]{\Data} \closedcycle;
\addplot [stack plots=y, fill=gray!20, opacity=0.8, draw opacity=0, area legend] table [x=X,y=Spannweite] {\Data} \closedcycle;
\addplot [stack plots=false, draw=black, thick] table [x=X,y=A] {\Data};
\end{axis}
\end{tikzpicture}
\end{document}
Danke
Hallo,
ich möchte einen Verlauf einer Funktion inkl. Spannweite darstellen. Nach etwas suchen habe ich endlich eine Lösung gefunden.
Zum Abschluss habe ich noch das Problem, dass ich auf dem Label der x-Achse nur jeden n-ten Wert darstellen möchte. Wie mache ich das? Das Gitter soll sich automatisch anpassen. Momentan scheinen die Labels nicht zu der gezeichneten Funktion zu passen.
Gibt es eine Möglichkeit die Abstand zwischen zwei Werten auf der x-Achse zu definieren, so dass pdfplots automatisch die Anzahl an möglichen Labels berechnet und zwar so, dass diese sich nicht überschneiden.
Minimalbsp.:
[code]
\documentclass[border=5mm]{standalone}
\usepackage{pgfplots}
\pgfplotstableread{
X time label A B C D E F G min Spannweite
1 1983 {1983 - 2012} 0 0 0 0 0 0 0 0 0
2 1984 {1984 - 2013} -0.017121509 -0.033407736 -0.043991815 -0.041381073 -0.016848438 -0.01975182 -0.024115843 -0.086196319 0.140966659
3 1985 {1985 - 2014} 0.019168814 -0.012487143 -0.022193156 -0.015052538 0.024497873 0.0092011 -0.001395904 -0.073354262 0.191223186
4 1986 {1986 - 2015} 0.010553887 -0.042213326 -0.049313848 -0.027375214 0.021355285 0.010324509 0.004243064 -0.122494299 0.255413153
5 1987 {1987 - 2016} -0.023699411 -0.086672055 -0.086567445 -0.049278918 -0.004004168 -0.006249814 -0.000485287 -0.155460783 0.278589525
6 1988 {1988 - 2017} -0.011886025 -0.08330078 -0.080887601 -0.045744396 0.013681493 0.009097842 0.011756454 -0.153528005 0.290258406
7 1989 {1989 - 2018} -0.024541182 -0.092471578 -0.096826026 -0.069472379 0.013713619 -0.016252304 -0.016818474 -0.155341913 0.292655885
8 1990 {1990 - 2019} -0.00487213 -0.048878959 -0.067800322 -0.057844643 0.047403555 -0.009876466 -0.004226095 -0.139123335 0.32474989
9 1991 {1991 - 2020} 0.035935224 0.004910143 -0.021977269 -0.010510656 0.085810092 0.030781789 0.027625115 -0.082000587 0.291281542
10 1992 {1992 - 2021} 0.052810952 0.037344474 0.020971934 0.014958498 0.094824217 0.050443658 0.052110916 -0.068387719 0.328695796
11 1993 {1993 - 2022} 0.048162089 0.035307546 0.012143249 -0.002588001 0.094532826 0.028854705 0.028604777 -0.106878338 0.363469069
12 1994 {1994 - 2023} 0.078112382 0.053990896 0.03202067 0.016204563 0.115955317 0.040331221 0.047539245 -0.091859473 0.342772934
13 1995 {1995 - 2024} 0.142922917 0.141157734 0.119961698 0.079482743 0.180735535 0.09577619 0.105475763 0.006035939 0.301282051
14 1996 {1996 - 2025} 0.171052784 0.179799901 0.147651521 0.086928911 0.213724998 0.111784405 0.106847191 -0.030107748 0.358633431
15 1997 {1997 - 2026} 0.165456042 0.181184872 0.153591158 0.095922745 0.217267418 0.11636918 0.115100914 -0.033022123 0.372371643
16 1998 {1998 - 2027} 0.224240187 0.222951116 0.190423168 0.143155332 0.269765063 0.185907948 0.170090426 0.016558039 0.380009303
17 1999 {1999 - 2028} 0.223616776 0.226696304 0.205100607 0.155756066 0.261785525 0.176642682 0.16036626 0.029030541 0.327152522
18 2000 {2000 - 2029} 0.210237372 0.227171501 0.19845006 0.142596592 0.268970306 0.154867414 0.137484693 0.012038343 0.329654591
19 2001 {2001 - 2030} 0.2300689 0.237031319 0.212801484 0.164336768 0.293214931 0.187869427 0.170925841 0.083072499 0.26578724
20 2002 {2002 - 2031} 0.281759088 0.28158237 0.263572235 0.215203865 0.338041061 0.240563645 0.226988863 0.121990692 0.259313934
21 2003 {2003 - 2032} 0.291069512 0.286507696 0.272198638 0.223680197 0.35387195 0.253847404 0.234544591 0.188787783 0.208484208
22 2004 {2004 - 2033} 0.279696016 0.256946107 0.253783435 0.220418141 0.334292877 0.239954812 0.223443376 0.145399019 0.243891953
23 2005 {2005 - 2034} 0.299570795 0.270056399 0.273249056 0.241981287 0.356514012 0.268356568 0.254467148 0.205903041 0.208363089
24 2006 {2006 - 2035} 0.309615651 0.288330802 0.295104247 0.251328015 0.374036303 0.26990925 0.257330405 0.189790925 0.218600357
25 2007 {2007 - 2036} 0.334396198 0.325301036 0.33266742 0.276373125 0.406220708 0.290316854 0.285009109 0.164827036 0.292418732
26 2008 {2008 - 2037} 0.371887935 0.370445833 0.377481111 0.316790364 0.436335293 0.324749389 0.316231169 0.195754904 0.281052286
27 2009 {2009 - 2038} 0.390667456 0.389525845 0.394594888 0.335774503 0.460629342 0.346089636 0.34321401 0.184665097 0.37308909
28 2010 {2010 - 2039} 0.433736661 0.427886718 0.435651017 0.373323563 0.498610897 0.384062949 0.386534691 0.1829685 0.473446551
29 2011 {2011 - 2040} 0.473674668 0.475968631 0.485528631 0.421916836 0.534010866 0.428048737 0.433321488 0.260294957 0.427565888
30 2012 {2012 - 2041} 0.46168758 0.468334961 0.482403125 0.423924017 0.517868011 0.425154602 0.43507744 0.230756039 0.48193625
31 2013 {2013 - 2042} 0.489269937 0.486926286 0.492285659 0.435349385 0.549691709 0.447369925 0.458191789 0.253839723 0.461647824
32 2014 {2014 - 2043} 0.531425078 0.532379389 0.536581791 0.47675367 0.600494315 0.484484524 0.493143287 0.213728132 0.602720808
33 2015 {2015 - 2044} 0.555327202 0.556650037 0.562337987 0.491977778 0.618779023 0.494678952 0.508404903 0.228674333 0.619103155
34 2016 {2016 - 2045} 0.578895348 0.59554575 0.592775176 0.518415477 0.649811829 0.512698601 0.524595134 0.236213715 0.616146512
35 2017 {2017 - 2046} 0.626806423 0.649842415 0.648197846 0.563925478 0.697474029 0.556888209 0.571052026 0.239529226 0.638046746
36 2018 {2018 - 2047} 0.665394097 0.694836343 0.691952978 0.606052624 0.743677475 0.597279404 0.616604513 0.192976858 0.751212912
37 2019 {2019 - 2048} 0.732525485 0.770616312 0.770732625 0.686651481 0.804595643 0.671722551 0.696548627 0.239398067 0.795997432
38 2020 {2020 - 2049} 0.741315034 0.78518986 0.783443389 0.698495025 0.808797061 0.683760755 0.711032203 0.24673281 0.779420334
39 2021 {2021 - 2050} 0.768481223 0.808276911 0.803749661 0.714082001 0.842087552 0.711349275 0.737789247 0.313184241 0.739605615
40 2022 {2022 - 2051} 0.774142054 0.806783362 0.794206577 0.714286281 0.848367335 0.71745826 0.749810838 0.227900328 0.877740603
41 2023 {2023 - 2052} 0.807467935 0.840161685 0.838013515 0.763509688 0.877910911 0.76380641 0.809288296 0.244797274 0.893231395
42 2024 {2024 - 2053} 0.873055245 0.910648463 0.900370973 0.82860762 0.948464718 0.837101181 0.87786714 0.327795198 0.872733752
43 2025 {2025 - 2054} 0.871693248 0.894911189 0.886821435 0.82948376 0.947331394 0.851130646 0.892213995 0.330872303 0.873132443
44 2026 {2026 - 2055} 0.890040304 0.916658705 0.907396126 0.852034206 0.968032715 0.869171063 0.911976626 0.370480916 0.859132109
45 2027 {2027 - 2056} 0.935158752 0.954043871 0.944781851 0.89614354 1.003763737 0.9191149 0.961000089 0.356866813 0.966984114
46 2028 {2028 - 2057} 0.964747939 0.992655695 0.994650352 0.948560021 1.026834143 0.952701095 1.014543608 0.353999987 1.062290385
47 2029 {2029 - 2058} 1.02780542 1.059577163 1.063601408 1.026900246 1.08967071 1.030712214 1.091669717 0.441944943 1.059194973
48 2030 {2030 - 2059} 1.077961853 1.113736581 1.119002072 1.082620752 1.135675016 1.081485366 1.143310615 0.520863122 0.974474534
49 2031 {2031 - 2060} 1.12399162 1.166127748 1.172771516 1.145775129 1.163675441 1.137910958 1.204792387 0.564064478 1.028258082
50 2032 {2032 - 2061} 1.156512553 1.212171712 1.215992495 1.183353654 1.19583324 1.182771146 1.249132814 0.568324834 1.043387999
51 2033 {2033 - 2062} 1.200269251 1.256172921 1.26474565 1.245100358 1.224293615 1.2378828 1.31317218 0.618161641 1.020545536
52 2034 {2034 - 2063} 1.276734381 1.345176945 1.354081728 1.336550766 1.29819637 1.336898704 1.426576743 0.692909391 1.090406215
53 2035 {2035 - 2064} 1.333744682 1.420582025 1.419341432 1.407193836 1.349149607 1.404676539 1.49495229 0.782396529 1.052227944
54 2036 {2036 - 2065} 1.358749546 1.451171887 1.44347115 1.434323898 1.380576478 1.433777801 1.51373013 0.837618724 0.995098306
55 2037 {2037 - 2066} 1.407008683 1.487133376 1.479235439 1.48157398 1.420729643 1.485819648 1.561326094 0.907409259 0.973023549
56 2038 {2038 - 2067} 1.464538073 1.540992362 1.536274624 1.551137957 1.469879596 1.55868312 1.643361684 0.914708849 1.107646534
57 2039 {2039 - 2068} 1.510456056 1.593473054 1.594111663 1.608358031 1.509483173 1.608986608 1.694286018 0.986079711 1.059236627
58 2040 {2040 - 2069} 1.535196309 1.628966279 1.630786895 1.647573208 1.528286957 1.647294063 1.730291243 1.016213673 1.069198311
59 2041 {2041 - 2070} 1.542021804 1.626232445 1.630791116 1.653617338 1.533654976 1.66308718 1.742306144 1.012641627 1.101786811
60 2042 {2042 - 2071} 1.574776594 1.66162872 1.664260913 1.689444617 1.564633882 1.692833981 1.778988745 1.071657369 1.079777211
61 2043 {2043 - 2072} 1.589206354 1.685235201 1.694288559 1.725515769 1.562262704 1.719714336 1.817459671 1.073886346 1.125601282
62 2044 {2044 - 2073} 1.610139551 1.709472451 1.723466639 1.75801086 1.571785286 1.751812193 1.861289172 1.066158613 1.18175934
63 2045 {2045 - 2074} 1.651266591 1.761986427 1.78424809 1.816319535 1.612314997 1.804049283 1.918019456 1.051068548 1.290479137
64 2046 {2046 - 2075} 1.684136986 1.795718468 1.818575311 1.852805218 1.645913643 1.849061663 1.961606069 1.093926152 1.318816495
65 2047 {2047 - 2076} 1.711950808 1.819729309 1.839285541 1.881449528 1.66566606 1.878737245 1.988798129 1.137228829 1.341085766
66 2048 {2048 - 2077} 1.741081487 1.833155525 1.855506051 1.912630145 1.684414064 1.91841873 2.026677243 1.187224052 1.308854162
67 2049 {2049 - 2078} 1.759173884 1.846179708 1.870001372 1.935729642 1.702528461 1.938429043 2.053880151 1.236627527 1.308212202
68 2050 {2050 - 2079} 1.821957245 1.914450093 1.947766231 2.013564609 1.756787031 2.006210123 2.125393131 1.281682677 1.319406191
69 2051 {2051 - 2080} 1.832650628 1.924405464 1.963778459 2.034888677 1.75935254 2.018893364 2.144566063 1.253213059 1.417515112
70 2052 {2052 - 2081} 1.90147542 2.002501579 2.051485079 2.126406657 1.81777238 2.101150118 2.225565935 1.361188477 1.357525234
71 2053 {2053 - 2082} 1.936002274 2.043579035 2.089530512 2.161532165 1.842456734 2.140095678 2.259735341 1.362976623 1.422588109
72 2054 {2054 - 2083} 1.962039794 2.082388799 2.133978897 2.199473727 1.860964215 2.175732679 2.299298433 1.371589355 1.453152498
73 2055 {2055 - 2084} 2.037083597 2.166391525 2.220342437 2.286236855 1.919561624 2.252230442 2.382111422 1.445553043 1.534228553
74 2056 {2056 - 2085} 2.088158354 2.222277452 2.278936313 2.353751262 1.956487028 2.322201916 2.456862053 1.427092605 1.663122533
75 2057 {2057 - 2086} 2.128926834 2.264910644 2.325053151 2.410679486 1.985027714 2.384705614 2.533506258 1.420700918 1.78036235
76 2058 {2058 - 2087} 2.174894284 2.316286644 2.373102678 2.446371463 2.035668489 2.427278001 2.570489092 1.46141329 1.815386031
77 2059 {2059 - 2088} 2.224813794 2.368289771 2.422337384 2.498519042 2.078794771 2.478880385 2.629777314 1.482569498 1.848565951
78 2060 {2060 - 2089} 2.256399902 2.390228001 2.44583375 2.520596508 2.111910282 2.512277797 2.666205462 1.485835363 1.871982034
79 2061 {2061 - 2090} 2.311885686 2.44658055 2.50669335 2.572766083 2.171189322 2.554316472 2.71472186 1.55837305 1.875107792
80 2062 {2062 - 2091} 2.307906405 2.435937425 2.494213393 2.576779108 2.165999506 2.554712035 2.720327514 1.585094642 1.774181484
81 2063 {2063 - 2092} 2.358258356 2.475567742 2.53831209 2.624653649 2.21209766 2.611025184 2.782215061 1.632674514 1.786795595
82 2064 {2064 - 2093} 2.416522771 2.526194355 2.58626756 2.678588815 2.257695505 2.675913633 2.839162135 1.681057351 1.79271713
83 2065 {2065 - 2094} 2.442922663 2.546023786 2.613134878 2.703008614 2.285022945 2.692875561 2.857521291 1.70412459 1.768297303
84 2066 {2066 - 2095} 2.52341658 2.608100966 2.686074006 2.793995684 2.345479598 2.792135185 2.970881776 1.715426062 1.859875981
85 2067 {2067 - 2096} 2.544469934 2.625972414 2.712383344 2.824030395 2.354048424 2.821966616 3.006671715 1.722197173 1.906033824
86 2068 {2068 - 2097} 2.524215679 2.603371019 2.696820731 2.811816011 2.33496815 2.80536687 2.995734657 1.704771975 1.910714585
87 2069 {2069 - 2098} 2.553907755 2.622920639 2.727764864 2.862892013 2.361846429 2.848345051 3.055447638 1.747192521 1.933177842
88 2070 {2070 - 2099} 2.55515788 2.615621443 2.719432298 2.863752366 2.368219378 2.852742555 3.064741987 1.744131494 1.919366444
}\Data
\begin{document}
\begin{tikzpicture}
%\pgfplotstableread[col sep=semicolon]{data/datafilledcurves.csv}\Data
\begin{axis}[
xticklabels from table={\Data}{label},
xtick={0,5,...,88},
xticklabel style={rotate=90,xshift=-0.4ex,anchor=mid east},
% extra y ticks=0,
% extra y tick style={grid=major, grid style={green!20,opacity=0.75}},
% y tick label style={/pgf/number format/1000 sep=},
reverse legend,
legend pos=north west,
legend entries={Spannweite, X},
tiny,
height=4cm,
width=10cm,
ylabel={Änderung},
xlabel={Test},
ymin=-0.5, ymax=4,
xmin=0, xmax=88,
grid=major,
axis x line* = bottom,
axis y line* = left
]
\addplot [stack plots=y, fill=none, draw=none, forget plot] table [x=X,y=min]{\Data} \closedcycle;
\addplot [stack plots=y, fill=gray!20, opacity=0.8, draw opacity=0, area legend] table [x=X,y=Spannweite] {\Data} \closedcycle;
\addplot [stack plots=false, draw=black, thick] table [x=X,y=A] {\Data};
\end{axis}
\end{tikzpicture}
\end{document}
[/code]
Danke